TDD Noise

  • A+
所属分类:手机音频 音频研发

手机TDMA noise的产生

推荐0

该杂音为一般手机最常见之TDD noise (Time Division Distortion), 所造成的原因为手机射频发射模块端的功率放大器(Power Amplify)每1/216.8秒会有一个发射讯号产生, 在该讯号中包含900MHz/1800MHz或是1900MHz的2.0G GSM 讯号以及PA的包络线(envelope),我们所听到的嗡嗡声就是PA在发射时产生的的包络线(envelope)杂音,因为人的耳朵的听觉频率范围为20Hz~20KHz,216.8Hz确实是落在人耳可听到的范围,当耳机线路从audio codec输出到耳机中间的线路因为设计不良而让杂讯有机会窜入的话,便会听到诸如此类的嗡嗡杂音.

一般手机大厂在设计耳机线路的时候,都会很注重TDD noise的问题,也会使用许多可行之保护设计元件获线路来避免此一问题,比如说加上(电磁波)EMI保护元件在适当的线段上,还有使用严密的隔离层(一般会使用Analog Ground)保护此一音频线段不受TDD noise影响,并于量产前反覆使用相关仪器测量该只手机的idle nosie...一般在耳机听筒端的idle noise 不能大于-52dB...不然会听的很明显....至于对方听筒听到的嗡嗡TDD则是我们手机在麦克风处引入的TDD noise或是对方手机设计不良....

TDD NOISE的一些处理方法

(1)好多手机都会产生恼人的TDMA噪声,频率为217Hz.  其产生的原因如下两种途径:

       a,天线辐射出的射频能量干扰
此种干扰可被33PF电容有效滤除, 即在Receiver两端分别对地加电容,两端间再加一电容,共3个电容即可.
b, PA突发工作时带动电源产生的干扰
此种干扰无法滤除,因为217Hz的频率实在是太低啦,又恰好与receiver的音频重叠在一起.无法从频率上分开信号与干扰.

(2)串电阻可以减小该TDMA的噪声,同时加大RECEIVER的输出增益,电阻大小可根据调试情况而定(针对PA突发工作时带动电源产生的干扰)

(3) GSM的TDMA每个timeslot(时隙)为577uS,每帧有8个timeslot,即每帧长为577us×8=4.616ms。GSM是收发  双工的,也就是只要处于通信状态,发射帧是连续发  送的。PA在每次发射是都会有一个burst大电流的需求,电源电路就会把这个噪声串到整个电路板上。

(4) a,走线要并行走且用的保护
b,走线避免临近大信号区
c,音频电源要干净
d,mic的偏置电源、地要保护好

(5) a, 如果走線太長, receiver AMP 必須盡量靠近CPU端.可以在audio訊號受到干擾前先放大聲音訊號
b, 22pF電容比33pF有效..最好是加再receiver兩端
c, receiver兩端的走線盡量靠近.上下包GND

(6)  差分线上的干扰信号可以表示为一个共模干扰部分+差摸干扰部分,差分线之间的电容是为了去差摸干扰,而每根线到地的电容是为了去共模干扰。

(7)  不同容值,材料的电容,谐振频率不一样,用来滤掉特定频率的干扰,需要选合适谐振频率的电容。所以很多地方滤波都有大大小小不同容值电容并联。

(8)bead滤除高频noise,虽然其本身听不见,但如果这个noise以一定的频率(音频范围)出现(比如GSM中的TDD noise),这样,其就会造成可听见的噪音。还有出于EMI的考虑,通常音频通路比较长,比如喇叭的绕线,耳机线等,会拾取和发射高频noise,所以要添加bead滤掉。

(9)电容的规格书上有曲线图,每个电容对不同的频率都有一个ESR,有一个最小值。电容在低于其谐振频率时候其呈现的是容性,等于谐振频率时表现为电阻性,高于谐振频率时表现为电感性。同样容值不同类型的电容的ESR也会有很大差别,其表现出来的谐振点也会有区别。即使同是陶瓷电容,NPO,Z5U,X7R,Y5V等等之间的频率特性就不一样,再加上走线也会产生寄生电感,所以说一定要针对哪个电容针对哪个频段是很难确定的。

(10)  音频线上,比如耳机接口上、Mic、Speaker、Receiver线上,串磁珠其实也挺常见的,特别是在耳机线上。当然主要的目的是减少EMI,耳机线很长,相当于天线,串上磁珠可以阻塞高频率的噪声通过耳机线向外辐射。在Mic、Speaker、Receiver上,其实是有一点多此一举,如果连接的Cable很短的话。针对射频对音频的干扰,则一般通过小电容的滤波来解决,而用不着磁珠。其实很多电路,都是那些似懂非懂的人做出来的。还是需要从基本原理去理解各种器件的特性及其在电路中的作用来着手,思考其是否有用,是否必要。

(11)通常耳机电路都是需要隔值钽电容的,大概在百uf级(现在有专用的capless驱动芯片,可以省去电容)。这个TAN电容的ESR相当于增加了耳机的负载,会降低耳机的输出功率。但同样有助于改善低频响应。通常选这标准品TAN电,其ESR大约几个ohm,影响不至于太大。
(12)我们的任务主要是滤除GSM的TDD noise。 因为GSM的最大发射功率有33dbm,而DCS的最大发射功率只有30db,功率比GSM大约小一倍,所以干扰一般也比较小。

(13)两种TDD测试方法:

          主观测试方法:
用cmu200测量在gsm或dcs制式下大功率的TDD NOISE:手机和CMU200相连,把功率控制等级调整到最大。语音链接 方式设置为loop back,说话并倾听声音质.

         客观测试方法:     测量TDD NOISE的频谱
手机和CMU相连,FILE菜单设置为磁盘中文件216.sac的设置,选择channel 2,DISPLAY设置为通道X的纵坐标为-20到-120dbc,横坐标设置为200hz到4K或更大,按图形按钮显示扫描图形。就可以看到不断刷新的频谱。在图形中我们能看到发射回路上的217hz noise,及其多次谐波的脉冲。

(14)对音频攻放电源引起的TDD ,一般可加100nF和4.7UF的电容滤除电源上的噪音

(15)针对receiver通路噪音,可加下拉电阻来降低底噪?(不知是否可行)

在PCB layout时,RFPA、PMIC、以及音频的APA几个直接连在电池VBAT上的耗电大户,应该分别直接从电池连接器上引线,而不要从一个干线上引线。

   也就是,几个单元之间不要有公共的供电路径,这样,可最小化电源产生的干扰。

请问: MIC SPK REC线上通常串有磁珠或电感,那么这个磁珠或电感在PCB上应该放在什么地方?如果MIC SPK REC离功放很远的话,磁珠应该靠近MIC SPK REC放置还是靠近功放放置。我参考了NOKIA的和sony ericsson的,结果不一样:NOKIA的bead靠近MIC SPK REC放置,而sony ericsson的靠近功放放置,而且sony ericsson的原理图上都要求这么做的。有没有人解释下为什么? 这两种放置有什么不一样?

还有一条,我们用的是衰减法,噪声的大小是一样的,串联个电阻,然后在软件中增大音量。这是最后的做法,但很有效的。

有些手机的PA用的是D类功放,其开关频率噪声会严重影响射频性能。此时,需将BEAD靠近功放放置。

当然也有手机把Bead靠电声器件放置的,此时的目的却是为了防止射频等杂讯对音频的干扰。

两者的侧重点不一样。

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: