PCB设计基础知识与基本概念

  • A+
所属分类:音频杂谈

PCB设计基础知识

印刷电路板(Printed circuit board,PCB)几乎会出现在每一种电子设备当中。如果在某样设备中有电子零件,那么它们也都是镶在大小各异的PCB上。除了固定各种小零件外,PCB的主要功能是提供上头各项零件的相互电气连接。随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了。 标准的PCB长得就像这样。裸板(上头没有零件)也常被称为「印刷线路板Printed Wiring Board(PWB)。

    板子本身的基板是由绝缘隔热、并不易弯曲的材质所制作成。在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。这些线路被称作导线(conductor pattern)或称布线,并用来提供PCB上零件的电路连接。

    为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。在最基本的PCB(单面板)上,零件都集中在其中一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,PCB的正反面分别被称为零件面(Component Side)与焊接面(Solder Side)。

    如果PCB上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。由于插座是直接焊在板子上的,零件可以任意的拆装。下面看到的是ZIF(Zero Insertion Force,零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。插座旁的固定杆,可以在您插进零件后将其固定。

    如果要将两块PCB相互连结,一般我们都会用到俗称「金手指」的边接头(edge connector)。金手指上包含了许多裸露的铜垫,这些铜垫事实上也是PCB布线的一部份。通常连接时,我们将其中一片PCB上的金手指插进另一片PCB上合适的插槽上(一般叫做扩充槽Slot)。在计算机中,像是显示卡,声卡或是其它类似的界面卡,都是借着金手指来与主机板连接的。

    PCB上的绿色或是棕色,是阻焊漆(solder mask)的颜色。这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。在阻焊层上另外会印刷上一层丝网印刷面(silk screen)。通常在这上面会印上文字与符号(大多是白色的),以标示出各零件在板子上的位置。丝网印刷面也被称作图标面
legend)。

单面板(Single-Sided Boards)

    我们刚刚提到过,在最基本的PCB上,零件集中在其中一面,导线则集中在另一面上。因为导线只出现在其中一面,所以我们就称这种PCB叫作单面板(Single-sided)。因为单面板在设计线路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期的电路才使用这类的板子。

双面板(Double-Sided Boards)

    这种电路板的两面都有布线。不过要用上两面的导线,必须要在两面间有适当的电路连接才行。这种电路间的「桥梁」叫做导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。因为双面板的面积比单面板大了一倍,而且因为布线可以互相交错(可以绕到另一面),它更适合用在比单面板更复杂的电路上。

多层板(Multi-Layer Boards)

    为了增加可以布线的面积,多层板用上了更多单或双面的布线板。多层板使用数片双面板,并在每层板间放进一层绝缘层后黏牢(压合)。板子的层数就代表了有几层独立的布线层,通常层数都是偶数,并且包含最外侧的两层。大部分的主机板都是4到8层的结构,不过技术上可以做到近100层的PCB板。大型的超级计算机大多使用相当多层的主机板,不过因为这类计算机已经可以用许多普通计算机的集群代替,超多层板已经渐渐不被使用了。因为PCB中的各层都紧密的结合,一般不太容易看出实际数目,不过如果您仔细观察主机板,也许可以看出来。

    我们刚刚提到的导孔(via),如果应用在双面板上,那么一定都是打穿整个板子
不过在多层板当中,如果您只想连接其中一些线路,那么导孔可能会浪费一些其它层的线路空间。埋孔(Buried vias)和盲孔(Blind vias)技术可以避免这个问题,因为它们只穿透其中几层。盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。

    在多层板PCB中,整层都直接连接上地线与电源。所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。

零件封装技术

插入式封装技术(Through Hole Technology)

    将零件安置在板子的一面,并将接脚焊在另一面上,这种技术称为「插入式(Through Hole Technology,THT)」封装。这种零件会需要占用大量的空间,并且要为每只接脚钻一个洞。所以它们的接脚其实占掉两面的空间,而且焊点也比较大。但另一方面,THT零件和SMT(Surface Mounted Technology,表面黏着式)零件比起来,与PCB连接的构造比较好,关于这点我们稍后再谈。像是排线的插座,和类似的界面都需要能耐压力,所以通常它们都是THT封装。

表面黏贴式封装技术(Surface Mounted Technology)

    使用表面黏贴式封装(Surface Mounted Technology,SMT)的零件,接脚是焊在与零件同一面。这种技术不用为每个接脚的焊接,而都在PCB上钻洞。

    表面黏贴式的零件,甚至还能在两面都焊上。

    SMT也比THT的零件要小。和使用THT零件的PCB比起来,使用SMT技术的PCB板上零件要密集很多。SMT封装零件也比THT的要便宜。所以现今的PCB上大部分都是SMT,自然不足为奇。

    因为焊点和零件的接脚非常的小,要用人工焊接实在非常难。不过如果考虑到目前的组装都是全自动的话,这个问题只会出现在修复零件的时候吧。

设计流程

在PCB的设计中,其实在正式布线前,还要经过很漫长的步骤,以下就是主要设计的流程:

系统规格

首先要先规划出该电子设备的各项系统规格。包含了系统功能,成本限制,大小,运作情形等等。

系统功能区块图

接下来必须要制作出系统的功能方块图。方块间的关系也必须要标示出来。

将系统分割几个PCB

    将系统分割数个PCB的话,不仅在尺寸上可以缩小,也可以让系统具有升级与交换零件的能力。系统功能方块图就提供了我们分割的依据。像是计算机就可以分成主机板、显示卡、声卡、软盘驱动器和电源等等。

决定使用封装方法,和各PCB的大小

    当各PCB使用的技术和电路数量都决定好了,接下来就是决定板子的大小了。如果设计的过大,那么封装技术就要改变,或是重新作分割的动作。在选择技术时,也要将线路图的品质与速度都考量进去。

绘出所有PCB的电路概图

    概图中要表示出各零件间的相互连接细节。所有系统中的PCB都必须要描出来,现今大多采用CAD(计算机辅助设计,Computer Aided Design)的方式。下面就是使用CircuitMakerTM设计的范例。

PCB的电路概图

初步设计的仿真运作

    为了确保设计出来的电路图可以正常运作,这必须先用计算机软件来仿真一次。这类软件可以读取设计图,并且用许多方式显示电路运作的情况。这比起实际做出一块样本PCB,然后用手动测量要来的有效率多了。

将零件放上PCB

    零件放置的方式,是根据它们之间如何相连来决定的。它们必须以最有效率的方式与路径相连接。所谓有效率的布线,就是牵线越短并且通过层数越少(这也同时减少导孔的数目)越好,不过在真正布线时,我们会再提到这个问题。下面是总线在PCB上布线的样子。为了让各零件都能够拥有完美的配线,放置的位置是很重要的。

测试布线可能性,与高速下的正确运作

    现今的部份计算机软件,可以检查各零件摆设的位置是否可以正确连接,或是检查在高速运作下,这样是否可以正确运作。这项步骤称为安排零件,不过我们不会太深入研究这些。如果电路设计有问题,在实地导出线路前,还可以重新安排零件的位置。

导出PCB上线路

    在概图中的连接,现在将会实地作成布线的样子。这项步骤通常都是全自动的,不过一般来说还是需要手动更改某些部份。下面是2层板的导线模板。红色和蓝色的线条,分别代表PCB的零件层与焊接层。白色的文字与四方形代表的是网版印刷面的各项标示。红色的点和圆圈代表钻洞与导孔。最右方我们可以看到PCB上的焊接面有金手指。这个PCB的最终构图通常称为工作底片(Artwork)。

    每一次的设计,都必须要符合一套规定,像是线路间的最小保留空隙,最小线路宽度,和其它类似的实际限制等。这些规定依照电路的速度,传送信号的强弱,电路对耗电与噪声的敏感度,以及材质品质与制造设备等因素而有不同。如果电流强度上升,那导线的粗细也必须要增加。为了减少PCB的成本,在减少层数的同时,也必须要注意这些规定是否仍旧符合。如果需要超过2层的构造的话,那么通常会使用到电源层以及地线层,来避免信号层上的传送信号受到影响,并且可以当作信号层的防护罩。

导线后电路测试

    为了确定线路在导线后能够正常运作,它必须要通过最后检测。这项检测也可以检查是否有不正确的连接,并且所有联机都照着概图走。

建立制作档案

    因为目前有许多设计PCB的CAD工具,制造厂商必须有符合标准的档案,才能制造板子。标准规格有好几种,不过最常用的是Gerber files规格。一组Gerber files包括各信号、电源以及地线层的平面图,阻焊层与网板印刷面的平面图,以及钻孔与取放等指定档案。

电磁兼容问题

    没有照EMC(电磁兼容)规格设计的电子设备,很可能会散发出电磁能量,并且干扰附近的电器。EMC对电磁干扰(EMI),电磁场(EMF)和射频干扰(RFI)等都规定了最大的限制。这项规定可以确保该电器与附近其它电器的正常运作。EMC对一项设备,散射或传导到另一设备的能量有严格的限制,并且设计时要减少对外来EMF、EMI、RFI等的磁化率。换言之,这项规定的目的就是要防止电磁能量进入或由装置散发出。这其实是一项很难解决的问题,一般大多会使用电源和地线层,或是将PCB放进金属盒子当中以解决这些问题。电源和地线层可以防止信号层受干扰,金属盒的效用也差不多。对这些问题我们就不过于深入了。

    电路的最大速度得看如何照EMC规定做了。内部的EMI,像是导体间的电流耗损,会随着频率上升而增强。如果两者之间的的电流差距过大,那么一定要拉长两者间的距离。这也告诉我们如何避免高压,以及让电路的电流消耗降到最低。布线的延迟率也很重要,所以长度自然越短越好。所以布线良好的小PCB,会比大PCB更适合在高速下运作。

制造流程

PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的「基板」开始

影像(成形/导线制作)

    制作的第一步是建立出零件间联机的布线。我们采用负片转印(Subtractive transfer)方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印(Additive Pattern transfer)是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。

    如果制作的是双面板,那么PCB的基板两面都会铺上铜箔,如果制作的是多层板,接下来的步骤则会将这些板子黏在一起。

接下来的流程图,介绍了导线如何焊在基板上。

    正光阻剂(positive photoresist)是由感光剂制成的,它在照明下会溶解(负光阻剂则是如果没有经过照明就会分解)。有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动(称作干膜光阻剂)。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。

    遮光罩只是一个制造中PCB层的模板。在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光(假设用的是正光阻剂)。这些被光阻剂盖住的地方,将会变成布线。

    在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂的有,氯化铁(Ferric Chloride),碱性氨(Alkaline Ammonia),硫酸加过氧化氢(Sulfuric Acid + Hydrogen Peroxide),和氯化铜(Cupric Chloride)等。蚀刻结束后将剩下的光阻剂去除掉。这称作脱膜(Stripping)程序。

钻孔与电镀

    如果制作的是多层PCB板,并且里头包含埋孔或是盲孔的话,每一层板子在黏合前必须要先钻孔与电镀。如果不经过这个步骤,那么就没办法互相连接了。

    在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学制程中完成。

多层PCB压合

    各单片层必须要压合才能制造出多层板。压合动作包括在各层间加入绝缘层,以及将彼此黏牢等。如果有透过好几层的导孔,那么每层都必须要重复处理。多层板的外侧两面上的布线,则通常在多层板压合后才处理。

处理阻焊层、网版印刷面和金手指部份电镀

    接下来将阻焊漆覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份外了。网版印刷面则印在其上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。金手指部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。

测试

    测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。
零件安装与焊接

    最后一项步骤就是安装与焊接各零件了。无论是THT与SMT零件都利用机器设备来安装放置在PCB上。

    THT零件通常都用叫做波峰焊接(Wave Soldering)的方式来焊接。这可以让所有零件一次焊接上PCB。首先将接脚切割到靠近板子,并且稍微弯曲以让零件能够固定。接着将PCB移到助溶剂的水波上,让底部接触到助溶剂,这样可以将底部金属上的氧化物给除去。在加热PCB后,这次则移到融化的焊料上,在和底部接触后焊接就完成了。

    自动焊接SMT零件的方式则称为再流回焊接(Over Reflow Soldering)。里头含有助溶剂与焊料的糊状焊接物,在零件安装在PCB上后先处理一次,经过PCB加热后再处理一次。待PCB冷却之后焊接就完成了,接下来就是准备进行PCB的最终测试了
节省制造成本的方法

    为了让PCB的成本能够越低越好,有许多因素必须要列入考量:

    板子的大小自然是个重点。板子越小成本就越低。部份的PCB尺寸已经成为标准,只要照着尺寸作那么成本就自然会下降。CustomPCB网站上有一些关于标准尺寸的信息。

    使用SMT会比THT来得省钱,因为PCB上的零件会更密集(也会比较小)。

    另一方面,如果板子上的零件很密集,那么布线也必须更细,使用的设备也相对的要更高阶。同时使用的材质也要更高级,在导线设计上也必须要更小心,以免造成耗电等会对电路造成影响的问题。这些问题带来的成本,可比缩小PCB尺寸所节省的还要多。

    层数越多成本越高,不过层数少的PCB通常会造成大小的增加。

    钻孔需要时间,所以导孔越少越好。

    埋孔比贯穿所有层的导孔要贵。因为埋孔必须要在接合前就先钻好洞。

    板子上孔的大小是依照零件接脚的直径来决定。如果板子上有不同类型接脚的零件,那么因为机器不能使用同一个钻头钻所有的洞,相对的比较耗时间,也代表制造成本相对提升。

    使用飞针式探测方式的电子测试,通常比光学方式贵。一般来说光学测试已经足够保证PCB上没有任何错误。

    总而言之,厂商在设备上下的工夫也是越来越复杂了。了解PCB的制造过程是很有用的,因为当我们在比较主机板时,相同效能的板子成本可能不同,稳定性也各异,这也让我们得以比较各厂商的能力。

    好的工程师可以光看主机板设计,就知道设计品质的好坏。您也许自认没那么强,不过下次您拿到主机板或是显示卡时,不妨先鉴赏一下PCB设计之美吧!

pcb设计注意事项

                                       pcb设计注意事项
一.焊盘重叠
焊盘(除表面贴装焊盘外)的重叠,也就是孔的重叠放置,在钻孔时会因为在一处多钻孔导致断钻头、导线损伤。

二.图形层的滥用
1. 违反常规设计,如元件面设计在BOTTOM层,焊接面设计在TOP,造成文件编辑时正反面错误。
2. PCB板内若有需铣的槽,要用KEEPOUT LAYER 或BOARD LAYER层画出,不应用其它层面,避免误铣或没铣。

三.异型孔
若板内有异型孔,用KEEPOUT 层画出一个与孔大小一样的填充区即可。异形孔的长/宽比例应≥2:1,宽度应>1.0mm,否则,钻床在加工异型孔时极易断钻,造成加工困难。

四.字符的放置
1. 字符遮盖焊盘SMD焊片,给印制板的通断测试及元件的焊接带来不便。
2. 字符设计的太小,造成丝网印刷的困难,使字符不够清晰。

五.单面焊盘孔径的设置
1. 单面焊盘一般不钻孔,若钻孔需标注,其孔径应设计为零。如果设计了数值,这样在产生钻孔数据时,其位就会钻出孔,轻则会影响板面美观,重则板子报废。
2. 单面焊盘若要钻孔就要做出特殊标注。

六.用填充区块画焊盘
用填充块画焊盘在设计线路时能够通过DRC检查,但对于加工是不行的,因此类焊盘不能直接生成阻焊数据,上阻焊剂时,该填充块区域将被阻焊剂覆盖,导致器件焊接困难。

七.设计中的填充块太多或填充块用极细的线填充
1. 产生光绘数据有丢失的现象,光绘数据不完全。
2. 因填充块在光绘数据处理时是用线一条一条去画的,因此产生的光绘数据量相当大,增加了数据处理难度。

八.表面贴装器件焊盘太短
这是对于通断测试而言,对于太密的表面贴装器件,其两脚之间的间距相当小,焊盘也相当细,安装测试须上下(右左)交错位置,如焊盘设计的太短,虽然不影响器件贴装,但会使测试针错不开位。

九.大面积网格的间距太小
组成大面积网格线同线之间的边缘太小(小于0.30mm),在印制过程中会造成短路。

十.大面积铜箔距外框的距离太近
大面积铜箔外框应至少保证0.20mm以上的间距,因在铣外形时如铣到铜箔上容易造成铜箔翘及由其引起焊剂脱落问题。

十一.外形边框设计的不明确
有的客户在KEEP LAYER 、BOARD LAYER、TOP OVER LAYER等都设计了外形线且这些外形线不重合,造成成型时很难判断哪一条是外型线。

十二.线条的放置
两个焊盘之间的连线,不要断断续续的画,如果想加粗线条不要用线条来重复放置,直接改变线条WIDTH即可,这样的话在修改线路的时候易修改。

--------------------------------------------------------------------------------

PCB设计几点体会

                                     PCB设计几点体会
这是个牵涉面大的问题。抛开其它因素,仅就PCB设计环节来说,我有以下几点体会,供参考:

1.要有合理的走向:如输入/输出,交流/直流,强/弱信号,高频/低频,高压/低压等...,它们的走向应该是呈线形的(或分离),不得相互交融。其目的是防止相互干扰。最好的走向是按直线,但一般不易实现,最不利的走向是环形,所幸的是可以设隔离带来改善。对于是直流,小信号,低电压PCB设计的要求可以低些。所以“合理”是相对的。

2.选择好接地点:小小的接地点不知有多少工程技术人员对它做过多少论述,足见其重要性。一般情况下要求共点地,如:前向放大器的多条地线应汇合后再与干线地相连等等...。现实中,因受各种限制很难完全办到,但应尽力遵循。这个问题在实际中是相当灵活的。每个人都有自己的一套解决方案。如能针对具体的电路板来解释就容易理解。

3.合理布置电源滤波/退耦电容:一般在原理图中仅画出若干电源滤波/退耦电容,但未指出它们各自应接于何处。其实这些电容是为开关器件(门电路)或其它需要滤波/退耦的部件而设置的,布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。有趣的是,当电源滤波/退耦电容布置的合理时,接地点的问题就显得不那么明显。

4.线条有讲究:有条件做宽的线决不做细;高压及高频线应园滑,不得有尖锐的倒角,拐弯也不得采用直角。地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。

5.有些问题虽然发生在后期制作中,但却是PCB设计中带来的,它们是:过线孔太多,沉铜工艺稍有不慎就会埋下隐患。所以,设计中应尽量减少过线孔。同向并行的线条密度太大,焊接时很容易连成一片。所以,线密度应视焊接工艺的水平来确定。焊点的距离太小,不利于人工焊接,只能以降低工效来解决焊接质量。否则将留下隐患。所以,焊点的最小距离的确定应综合考虑焊接人员的素质和工效。

    焊盘或过线孔尺寸太小,或焊盘尺寸与钻孔尺寸配合不当。前者对人工钻孔不利,后者对数控钻孔不利。容易将焊盘钻成“c”形,重则钻掉焊盘。导线太细,而大面积的未布线区又没有设置敷铜,容易造成腐蚀不均匀。即当未布线区腐蚀完后,细导线很有可能腐蚀过头,或似断非断,或完全断。所以,设置敷铜的作用不仅仅是增大地线面积和抗干扰。以上诸多因素都会对电路板的质量和将来产品的可靠性大打折扣。我不是这方面的专业设计人员,不对的地方请指正。

PCB设计基本概念
1、“层(Layer) ”的概念

    与字处理或其它许多软件中为实现图、文、色彩等的嵌套与合成而引入的“层”的概念有所同,Protel的“层”不是虚拟的,而是印刷板材料本身实实在在的各铜箔层。现今,由于电子线路的元件密集安装。防干扰和布线等特殊要求,一些较新的电子产品中所用的印刷板不仅有上下两面供走线,在板的中间还设有能被特殊加工的夹层铜箔,例如,现在的计算机主板所用的印板材料多在4层以上。这些层因加工相对较难而大多用于设置走线较为简单的电源布线层(如软件中的Ground Dever和Power Dever),并常用大面积填充的办法来布线(如软件中的ExternaI P1a11e和Fill)。上下位置的表面层与中间各层需要连通的地方用软件中提到的所谓“过孔(Via)”来沟通。有了以上解释,就不难理解“多层焊盘”和“布线层设置”的有关概念了。举个简单的例子,不少人布线完成,到打印出来时方才发现很多连线的终端都没有焊盘,其实这是自己添加器件库时忽略了“层”的概念,没把自己绘制封装的焊盘特性定义为”多层(Mulii一Layer)的缘故。要提醒的是,一旦选定了所用印板的层数,务必关闭那些未被使用的层,免得惹事生非走弯路。

2、过孔(Via)

  为连通各层之间的线路,在各层需要连通的导线的文汇处钻上一个公共孔,这就是过孔。工艺上在过孔的孔壁圆柱面上用化学沉积的方法镀上一层金属,用以连通中间各层需要连通的铜箔,而过孔的上下两面做成普通的焊盘形状,可直接与上下两面的线路相通,也可不连。一般而言,设计线路时对过孔的处理有以下原则:(1)尽量少用过
孔,一旦选用了过孔,务必处理好它与周边各实体的间隙,特别是容易被忽视的中间各层与过孔不相连的线与过孔的间隙,如果是自动布线,可在“过孔数量最小化” ( Via Minimiz8tion)子菜单里选择“on”项来自动解决。(2)需要的载流量越大,所需的过孔尺寸越大,如电源层和地层与其它层联接所用的过孔就要大一些。

3、丝印层(Overlay)

  为方便电路的安装和维修等,在印刷板的上下两表面印刷上所需要的标志图案和文字代号等,例如元件标号和标称值、元件外廓形状和厂家标志、生产日期等等。不少初学者设计丝印层的有关内容时,只注意文字符号放置得整齐美观,忽略了实际制出的PCB效果。他们设计的印板上,字符不是被元件挡住就是侵入了助焊区域被抹赊,还有的把元件标号打在相邻元件上,如此种种的设计都将会给装配和维修带来很大不便。正确的丝印层字符布置原则是:”不出歧义,见缝插针,美观大方”。

4、SMD的特殊性

  Protel封装库内有大量SMD封装,即表面焊装器件。这类器件除体积小巧之外的最大特点是单面分布元引脚孔。因此,选用这类器件要定义好器件所在面,以免“丢失引脚(Missing Plns)”。另外,这类元件的有关文字标注只能随元件所在面放置。

5、网格状填充区(External Plane )和填充区(Fill)

  正如两者的名字那样,网络状填充区是把大面积的铜箔处理成网状的,填充区仅是完整保留铜箔。初学者设计过程中在计算机上往往看不到二者的区别,实质上,只要你把图面放大后就一目了然了。正是由于平常不容易看出二者的区别,所以使用时更不注意对二者的区分,要强调的是,前者在电路特性上有较强的抑制高频干扰的作用,适用于需做大面积填充的地方,特别是把某些区域当做屏蔽区、分割区或大电流的电源线时尤为合适。后者多用于一般的线端部或转折区等需要小面积填充的地方。

6、焊盘( Pad)

  焊盘是PCB设计中最常接触也是最重要的概念,但初学者却容易忽视它的选择和修正,在设计中千篇一律地使用圆形焊盘。选择元件的焊盘类型要综合考虑该元件的形状、大小、布置形式、振动和受热情况、受力方向等因素。Protel在封装库中给出了一系列不同大小和形状的焊盘,如圆、方、八角、圆方和定位用焊盘等,但有时这还不够用,需要自己编辑。例如,对发热且受力较大、电流较大的焊盘,可自行设计成“泪滴状”,在大家熟悉的彩电PCB的行输出变压器引脚焊盘的设计中,不少厂家正是采用的这种形式。一般而言,自行编辑焊盘时除了以上所讲的以外,还要考虑以下原则:
(1)形状上长短不一致时要考虑连线宽度与焊盘特定边长的大小差异不能过大;
(2)需要在元件引角之间走线时选用长短不对称的焊盘往往事半功倍;
(3)各元件焊盘孔的大小要按元件引脚粗细分别编辑确定,原则是孔的尺寸比引脚直径大0.2- 0.4毫米。

7、各类膜(Mask)

   这些膜不仅是PcB制作工艺过程中必不可少的,而且更是元件焊装的必要条件。按“膜”所处的位置及其作用,“膜”可分为元件面(或焊接面)助焊膜(TOp or Bottom 和元件面(或焊接面)阻焊膜(TOp or BottomPaste Mask)两类。 顾名思义,助焊膜是涂于焊盘上,提高可焊性能的一层膜,也就是在绿色板子上比焊盘略大的各浅色圆斑。阻焊膜的情况正好相反,为了使制成的板子适应波峰焊等焊接形式,要求板子上非焊盘处的铜箔不能粘锡,因此在焊盘以外的各部位都要涂覆一层涂料,用于阻止这些部位上锡。可见,这两种膜是一种互补关系。由此讨论,就不难确定菜单中
类似“solder Mask En1argement”等项目的设置了。

8、飞线,飞线有两重含义:

  (1)自动布线时供观察用的类似橡皮筋的网络连线,在通过网络表调入元件并做了初步布局后,用“Show 命令就可以看到该布局下的网络连线的交叉状况,不断调整元件的位置使这种交叉最少,以获得最大的自动布线的布通率。这一步很重要,可以说是磨刀不误砍柴功,多花些时间,值!另外,自动布线结束,还有哪些网络尚未布通,也可通过该功能来查找。找出未布通网络之后,可用手工补偿,实在补偿不了就要用到“飞线”的第二层含义,就是在将来的印板上用导线连通这些网络。要交待的是,如果该电路板是大批量自动线生产,可将这种飞线视为0欧阻值、具有统一焊盘间距的电阻元
件来进行设计.

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: