耳机HIFI基础之如何看指标

  • A+
所属分类:手机音频 音频研发

耳机HIFI基础之如何看指标

(一)信噪比与噪声

在坛子上泡的时间长了,歪理也好真理也好林林总总说了不少,可是这些发言总是随机零散的,没有什么条理,于是答应了坛子上几位朋友写一篇条理清楚一点的、内容比较连贯的东西。本以为1、2千字就可以说明白,谁知一到提笔,却发现这是一个非常庞大的工程,HIFI牵涉的东西太多,如浩瀚之海洋,短短1、2千字也就是海中的一点沙砾而已。如果只写高阶的东西,对于初入此道的朋友如读天书,文章也就失去了其原本的意义。所以经过再三考虑,我决定从比较基础的东西写起,逐渐提高,希望论坛上的朋友能通过我的文章有所提高。

我文中的内容或来自读书的记忆,或来自10多年的经验体会,其中难免会有一些错误或不全,欢迎大家指正。

信噪比是音响界公认的衡量音响器材质量水准的一个重要指标,几乎所有的电声器材都会标注这个指标,没有这个指标的器材,要么是一些特制的专用器材设备,要么就是不正规的产品。信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷。信噪比作为设备、系统的基础指标之一,必须得到应有的高度重视。

信噪比,英文名称叫做SNR或S/N(SIGNAL-NOICE RATE),是指一个电子设备或者电子系统中信号与噪声的比例。这里面的信号指的是来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种信号并不随原信号的变化而变化。同样是“原信号不存在”还有一种东西叫“失真”,失真和噪声实际上有一定关系,二者的不同是失真是有规律的,而噪声则是无规律的,这个以后再讲。

信噪比的计量单位是dB,其计算方法是10LOG(Pn/Ps),其中Ps和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LOG(Vn/Vs),Vs和Vn分别代表信号和噪声电压的“有效值”。在音频放大器中,我们希望的是该放大器除了放大信号外,不应该添加任何其它额外的东西。因此,信噪比应该越高越好。

信噪比的测量及计算:

通过计算公式我们发现,信噪比不是一个固定的数值,它应该随着输入信号的变化而变化,如果噪声固定的话,显然输入信号的幅度越高信噪比就越高。显然,这种变化着的参数是不能用来作为一个衡量标准的,要想让它成为一种衡量标准,就必须使它成为一个定值。于是,作为器材设备的一个参数,信噪比被定义为了“在设备最大不失真输出功率下信号与噪声的比率”,这样,所有设备的信噪比指标的测量方式就被统一起来,大家可以在同一种测量条件下进行比较了。信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据10LOG(Vn/Vs)就可以计算出信噪比了。

这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到。因此就引入了一个“权”的概念。这是一个统计学上的概念,它的核心思想是,在进行统计的时候,应该将有效的、有用的数据进行保留,而无效和无用的数据应该尽量排除,使得统计结果接近最准确,每个统计数据都由一个“权”,“权”越高越有用,“权”越低就越无用,毫无用处的数据的“权”为0。于是,经过一系列测试和研究,科学家们找到了一条“通用等响度曲线”,这个曲线代表的是人耳对于不同频率的声音的灵敏度的差异,将这个曲线引入信噪比计算方法后,先兆比指标就和人耳感受的结果更为接近了。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。

噪声的种类、来源及电磁兼容

在一个音响系统中,由于信号是串联的,因此一件设备的噪声会进入下面的设备中被放大,所以系统最后的噪声是系统中所有设备噪声的累加。但是,当我们了解了系统中每一件器材的信噪比指标后,是否就可以确定整个系统的信噪比指标了呢?不,远远不能。这就要从噪声的来源和种类说起了。

我们把噪声的来源分为内部和外部两种,由于实验室的测试条件通常都十分优越,所以在这种条件下测试的信噪比指标实际是设备内部噪声的反应,内部噪声主要是由于电路设计、制造工艺等因素,由设备自身产生的,而外部噪声是由设备所在的电子环境和物理化学环境(自然环境)所造成的,外部噪声是不可能反映在信噪比指标中的。这一点通常会被很多人所忽略,经常听到有人说:这唱机的信噪比指标不是挺高的吗?怎么听起来噪音这么大,骗人的吧……。这就是没有搞清楚信噪比指标含义所造成的误解。

外部噪声通常被称为“干扰”,这种干扰可能是电磁干扰,也可能是机械振动干扰,也可能来自温度变化的干扰……总之,都不是器材自身产生的。于是此时另一个不太起眼的指标凸现出了它的意义-电池兼容性。

电磁兼容性有两个层次的含义,一是设备在运行时不会对其它设备产生干扰,二是耐受干扰的能力强,在一定的外界干扰下仍能正常工作。第一层意思容易理解,而第二层意思对于音响设备来说,还有更进一步的含义,那就是如何定义“正常工作状态”。这个正常工作不应该仅仅是“出声就好”,还应该是保证一定的性能指标,这其中就包括有信噪比。也就是所,一个电磁兼容性能优良的设备器材,在一定的外界干扰条件下,其信噪比指标不应该有明显的劣化。

实际上,很多音响产品在电路设计中都有“电磁兼容”的影子,比如在电源输入端设计滤波器、压敏电阻,外壳采用金属材料,内部信号线采用屏蔽线等等,实践证明,这些措施对于抑制干扰有很大的作用。

噪声的来源很复杂,我们可以把它们大致归结为三种,一种是元器件产生的固有噪声,电路中几乎所有的元器件在工作时都会产生一定的噪声,晶体管、电阻、电容,这种噪声是连续的,基本上是固定不变的,并且频谱分布很广泛,这种噪声除了改进元器件的材料和生产工艺外,几乎没有任何办法消除,也就是说,这种噪声几乎可以不用实验,在图纸上进行计算就可以推算出来。好在现在很多优质元器件的固有噪声都很小,在设计电路时选择优质元器件就可以把这种噪声压制到非常小的水平,小到我们根本不会听见。

第二种噪声来源于电路本身的设计失误或者安装工艺上的缺陷,电路设计失误往往会导致电路的轻微自激(一种自由振荡状态),这种自激一般在我们可以听到的声音范围之外,但是在某些特定条件下它们会对声音的中高频产生断续的影响,从而产生噪声。安装工艺失误就稍微复杂一些,比如接插件接触不良,接触表面形成二极管效应或者接触电阻随温度、振动等影响发生变化而导致信号传输特性变化,产生噪声。还有元器件排布上的失误,将高热的元器件排布在对温度敏感的元器件旁边,或者将一些有轻微振动的元器件放在对振动敏感的元器件旁边,或者没有足够的避震措施……等等这些,都会产生一定的噪声。这些噪声可以说都是人为造成的,对于经验丰富的电子设计师来说,这些噪声都是可以避免或者大大减轻的。

第三种噪声则是非常广泛的,也是经常被提起的干扰噪声。这种噪声来源很复杂,主要包括几个方面:

空间辐射干扰噪声:任何导体通过交变电流的时候都会引起周围电场强度的变化,这种变化就是电场辐射,同样,像变压器这样的磁体也会引起周围磁场强度的交替变化。我们知道,交变电场和磁场中的闭合导体会产生和电场磁场变化频率相同的交变电流,也叫感应电流。音响设备中所有的元器件、导线、电路板上的铜箔都是电导体,因此不可避免地会产生感应电流。这种感应电流叠加在信号中就会产生噪声。

线路串扰噪声:某些电气设备会产生干扰信号,这些干扰信号通过电源、信号线等线路直接窜入音响设备中。

传输噪声:这种噪声是信号在传输过程中由于传输介质的问题产生的,比如接插件的接触不良、信号线材质不佳、地电流串扰等等。其中,地电流串扰是经常容易被忽视的问题。由于民用音响器材大多采用非平衡传输方式,信号线的外屏蔽层实际上也参与的信号的传输,通常屏蔽层与音响器材的“地”连接,大多数音响器材的地是和设备的外壳相连的,并且和住宅供电线路提供的“大地”相连接。在正常情况下,住宅供电的大地是非常理想的,它使得所有连接线路的“地”都是平等的。但是,一旦这个接地出现故障,甚至某些不负责任的电力公司将这个地与市电的“零线”连接,就会出现问题了。此时消耗功率大的器材的“地”电压比别的器材要“高一点”,比且这个高低 的差别还会随着消耗功率的大小发生变化,我们知道,一般的音频信号线中传输的信号是很微弱的,这变化则足以使得信号线中传输的信号产生很大的变化。这变化除了产生失真外,也包含了一定的噪声。并且,由于接地不良,空间辐射对于信号传输的影响也会加剧。

噪声的表现

前面我们对噪声有了一些了解,那么我们如何来分辨这么多种类的噪声呢?当然是靠听了。我这里总结一下我们经常听到的噪声以及它们的来源:

稳定的咝咝声或沙沙声:这是放大器电路元器件产生的固有噪声,一般非常轻微而且稳定,不会随着音量调节而变化。除了改变放大器的电路设计,这种噪声无法消除。

嗡声:这是通常所说的“交流声”,来源非常复杂,器材工艺设计的不合理、连接线缆的屏蔽能力等都会产生这样的声音。有时,供电电压过低导致内部电路工作不正常也会产生交流声。

噼啪声:所谓的放电声,器材内部积累灰尘过多是产生这种声音的主要原因。有时元器件超过使用寿命而失效也会产生这种声音。遇上这种情况应该立即修理检查,否则有可能产生更大的问题。

流水声:这是一种高频自激的现象,是电路设计不良造成的,属于质量问题。

啸叫声、汽船声:典型的高频、低频自激,应该马上关闭你的系统电源,检查器材之间的连接是否有误。

偶尔的滋滋声:交流供电线路的串扰。当交流电的供电质量非常糟糕的时候,也会产生这种现象。

噗噗声:内部元器件出现故障的现象。

广播声:电路设计不良,放大器的开环频响很差,非线性失真严重,并且没有进行适当的处理就会产生这种现象。这种现象往往是设计者片面追逐过宽的闭环频响,而放大器电路本身开环性能不良产生矛盾造成的。这种情况很多时候会引发高频自激,严重时会导致喇叭或者耳机烧毁。

噪声对音质的影响

噪声对于音质的影响,尤其是对于主观音质评价的影响是非常大的,有时会起到决定性的作用。音响行业从模拟音频向数字音频进化的一个主要目的就是提高信噪比,减少噪声。盒式磁带录音机的信噪比指标约为-20~40dB,采用杜比降噪技术后最大可达到-67dB,LP唱片约为-30~50dB,开盘式磁带录音机约为-50~60dB,一般的CD唱机则可以达到-90~110dB,而最新的DVD-A和SACD可以达到-120dB以上,从这个进步上看,音响行业对于信噪比指标式十分看重的。

噪声对于音质的表现主要有几个方面:

一是过大的噪声会严重干扰听音者对音乐本身的关注,这是对于那些幅度很大的噪声信号而言的,这情形就像听音乐会时你了邻座不断大声聊天、手机乱响、磕瓜子劈劈啪啪,在这种环境下听音乐,听者不会有好心情的。

二是噪声会影响音乐细节的再现。我们知道,人耳的听觉具有“遮蔽效应”,在遮蔽效应中,除了强音对于弱音具有“屏蔽作用”外,还包括另一个现象,就是当两个声音的响度相差不大的时候,往往我们会把这两种声音混淆在一起,或者会感到出现时间比较长的那个声音的存在,出现时间短的声音就会弱化。正常情况下,噪声电平通常都不高,而音乐中的某些细节和噪声电平相当,这样,这些细节就会被“淹没在噪声的海洋中”,使得我们无法感受到它们。而这些细节(也称为弱信号)在声音重播环节中往往起到非常微妙的作用,我们所谓的“临场感”“空气感”“堂音”“泛音”等等主观音质中的元素就靠它们来实现,没有了它们“高保真”的效果就会大打折扣。

三是某些类型的噪声时系统故障的先兆或者诱因,如果不及时解决和避免,可能对系统的安全造成隐患,这一点前面前面已经有所说明了,这里不再赘述。

此外,很多时候,噪声并不是孤立的,信噪比指标的不好有可能暗示着器材设计上的失误,这一点对于设计者来说很重要。

噪声的消除措施

对于一般的消费者来说,是不可能消除器材本身的固有噪声的,遇上这种情况除了更换器材没有其它方法。但是,对于外部干扰,我们是可以用一些办法解决的:

电磁屏蔽:对于空间辐射干扰,我们可以选择金属质地的机柜来承载我们的系统,并且将金属机柜有效接地,就可以低档很多空间辐射。此外,对信号线、电源线也采取特殊的屏蔽处理,可以有效消除电子辐射干扰。对于那些漏磁比较严重的器材,我们可以将其放到距离其它器材较远的地方,或者加一个铁制机柜包起来,也可以大大消除磁场辐射。

净化电源:对于从供电线路中窜入的干扰信号,采用交流净化电源是个非常有效的方法,这种电源分为有源和无源两种形式,前者兼具交流稳压作用,除了可以滤除干扰外,还可以稳定供电电压,保证器材的正常工作状态。后者仅仅起到滤除干扰的作用,通常是以电源插座的形式出现,如果家中供电电压比较稳定,这样的电源净化器也有不错的效果。某些交流净化电源除了稳压滤波作用外,还有功率因数补偿、波形校正的功能,这种净化电源是最理想的电源净化设备,可惜价格不菲,一般人难以接受。

牢靠连接:采用高质量的接插件,保证信号线接头部位接触良好。

保养维护:爱惜你的器材,不要让它们长期工作在恶劣的环境下。总之,你去看看使用说明书,厂家的提示一般都说得非常清楚了。

(二)失真

失真,英文名是DISTORTION,本意是扭曲、变形的意思,用到了电子学上就变成了“失真”。失真这个名词如何而来无法考究,但是不可否认的是,这个名词在影响器材的音质评价中被使用的频率最多。说一个器材质量好的时候,往往会说“失真小”,质量不好就说“失真大”。曾几何时,失真仿佛变成了衡量器材品质的最高标准,似乎这个指标越好,器材的品质就越高。那么,实际情况是否如此呢?让我从头说起吧。

失真是什么

我们知道,由于现代电子技术的不完善,任何一个电子信号在传输、放大、转换的过程中都会发生一定的变化,这种变化就是失真。失真的本质是能量在传递、转化过程中的不唯一性。这听起来似乎很难理解,实际上却是非常粗浅的道理。比如说,我们用木材烧火取暖的时候(现在这种做法不环保了),木材中积聚的化学能在高温的作用下会转化为热能向周围辐射,同时还会转化成光能(火光,发光),其它形式的化学能(一氧化碳、二氧化碳等),并且还会有部分的化学能不能被充分利用,以灰烬的形式(碳)遗留下来。在木材的燃烧中,我们目前的技术无法使得木材的燃烧只产生热能或者光能,最多只能采用某些手段减少一些化学能的转化(例如尽量充分燃烧,减少一氧化碳和灰烬的数量)。于是,木柴中的化学能在转化的过程中就产生了“失真”,也就是说它们并没有按照我们的意愿完全转化成我们需要的能量形式(光或者热),有一部分能量“损失”了。

失真实际上就是这样一种“损失”的现象。电能在导体中传输,在某些元器件中被我们控制时,在转化成声能时,都会或多或少产生损失,根据能量守恒定律,这些能量的损失实际上并非是能量的真正“消失”,而是转化成了其它形式的能量。这是广义上“失真”。

还有另一种狭义上的失真,就是,既然我们无法控制能量不按照我们的意愿转化成我们需要的方式,能不能使这种损耗的“比例”保持不变呢?如果能做到这点,我们仍然可以认为“没有失真”,只要损失的那部分能量的比例是固定的,我们就可以当它“不存在”了。可惜的是,这也是不可能的,我们同样也不能完全控制这个比例。但是,我们可以有办法接近这个目标。此时,失真的含义稍微起了一点变化,由不损失能量变成了“损失能量的比例不变”,这就是狭义上的失真,狭义上的失真比广义上的失真更容易被人接受和理解,也具有实际的实践指导意义。

上面的失真概念,是从物理学上的角度来看的,听起来很抽象。从电子学上来看,就变得非常直接了当了。在电子学上,我们是这么理解“失真”的:当一个信号经过一个电子系统后,叠加在原信号中,所有与原信号无关的、由电子系统产生的新成分都是失真。从这个观点上说,放大本身也是一种“失真”,因为它改变了信号的幅度。但是显然这只是一个文字游戏而已,单纯的信号幅度放大正是我们所需要的能量转换方式,我们从来就不会把它当作失真来看待。于是我们又要引入一个概念,那就是“形状相似”,只要输入信号和设备的输出信号“形状相同”,就可以被认为“没有失真”。

这里要稍微解释一下“形状”,我们知道,所有的电子信号是没有“形状”的,我们不可能通过肉眼去直接观察每个电子信号“长的是什么样子”,我们只能借助电子仪器去把信号的特性通过可以观察的形式表现出来,这样的电子仪器就叫做“示波器”,它的工作原理是根据信号在某一个时间的大小,在电子显示屏描绘出一个“点”,并且按照时间顺序不断将这些点描绘成一个曲线,以表示信号的大小随时间变化的规律,于是我们就“看”到了信号的“形状”。同样,还有很多电子仪器可以帮助我们了解信号的特征,例如电压电流表、功率表等等。

失真的时域和频域分析

教科书上对这方面的论述实在时非常详尽了,我就不当抄书匠了。我只简要说一下结果就是了:

任何交流信号都具有三个基本特征:幅度、频率和相位。幅度是信号的强度,频率是信号重复的规律,相位是信号发生的时间,一个信号,不管它又多么复杂,都可以用这3个基本特征表示出来。正弦波是一种比较“完美”的波形(有关正弦波的特点可以看看中学物理教材,很清楚),任何一个复杂的波形都可以分解成很多不同频率、不同幅度的正弦波,这个波形可以被看成是这些同时出现的正弦波叠加的结果。例如方波,我们可以用一个公式来表达出来:S=S1+S2+S3……+Sn,(画公式很麻烦,这里就从简了,见谅),其中S代表一个方波,S1~Sn代表频率等于这个方波的n倍(n=1~无穷)的正弦波信号,需要注意的是S1到Sn这些信号实际上并不存在,并且幅度也是按照一定的规律下降的,通常当n大于4的时候,这些信号在方波中所占比例已经是微乎其微了,几乎可以不予考虑。

同样,失真也可以如此表示,被放大的信号可以表示为:A=X(A+a2+a3+a4……+an),其中的X表示放大倍数,a2~an表示失真。a2、a3……分别被称为二次谐波失真、三次谐波失真……。于是,我们又有了一个新概念:谐波失真。

谐波失真

正如上面所讲,所有的失真都可以通过时域频域分析分解为一连串的正弦波信号的叠加。这些正弦波信号有个共同的特点,就是它们的频率和原有信号的频率呈倍数关系,也就是说,它们和原信号有很紧密的依赖关系,如果信号消失了,它们也就不存在了。在物理学上,我们把频率呈倍数关系的不同振动称为彼此的“谐波”,这和电子学上的电子信号不谋而合,所以,这一类“波”的现象,都被称为“谐波”。谐波失真实际上是通过数学或者统计学推导出来的概念,由于其计算方法必须依赖于原始信号,它实际上并不会单独存在。

谐波(注意,不是谐波失真)是自然界中非常普遍的现象,音乐中每个8度的音符的频率正好是2倍谐波关系。我们知道,相差8度的两个音符叠加在一起的时候会使得声音很好听,感觉上很和谐(所以才有了“谐波”这个词)。由于人耳的这个特点,我们实际上对某些谐波失真并不觉得讨厌,而对另一些则非常讨厌。这个我们下面再说。

失真的测量方法、标准和计量单位

总谐波失真THD(TOTAL HARMONIC DISTORTION)

如果说谐波失真还可以归为物理概念或电子学概念的话,总谐波失真则完全是电子设备制造行业范畴里的概念了。首先我们要明确一点,总谐波失真是一个人为规定的测量标准的产物,它和我们所说的谐波失真并不是完全相同的概念,尽管前者在很大程度上依赖于后者。为什么要这么说呢?那是因为总谐波失真的测量有着非常具体的规定和标准,它和设备的一些其它特性有密切关系,例如输出功率。总谐波失真是指在放大器的标称功率下设备说产生的失真的总和,也就是说,只有在限定了放大器的工作状况后,才可以谈总谐波失真的大小。我们知道,放大器在不同的输出功率下的谐波失真是不同的,如果没有一个测定的标准,或者说一个基准点,不同设备采用的测量条件不同,那么这个指标也就失去了参考价值。所以,有关权威机构(IEC)就制订了这么一个特性指标,并明确了一个测试标准,大家都通过这个方法来测试自己的放大器,于是我们就可以通过这个参数来判别不同放大器的品质差异了。

THD+N

我们先来看看一个测试失真基本原理图。

从图中我们可以看到,最后出来的显示在电平表上的数据,实际上是所有不存在于原信号中的东西,除了谐波谐波失真外,还有噪声以及测试电路本身的失真。噪声,从根本上来说也是一种失真,只是和原信号无关罢了,但是显然也对设备的质量有一定的影响。并且从图中可以看出来,要从测量结果中把噪声因素除去还要经过二次测量和计算,并且似乎这种结果对于最终消费者来说没有太大的意义。于是,厂家们就“偷了个懒”,干脆就连失真带噪声一起算了。至于测量系统的因素,只要事先标定的时候记录下来,在最终结果中扣除就可以了。当然,我们希望测量仪器对结果的影响越少越好,所以才有了那么多昂贵的测试系统出现。这里的N就是NOISE,噪声。

失真的计量单位有2种,一种以百分比表示没有单位,另一种以电平表示,单位是分贝。这两种表示方法的内容稍有不同,前者用来表示THD,后者通常用来表示THD+N。从目前的趋势来看,使用后者作为计量单位的器材设备越来越多,这说明大多数生产厂家逐渐从关心单一指标转向将指标综合考虑。

失真的种类

失真只有一种,并且都可以分解成谐波失真的形式。但是实际上,只用谐波失真对于主观听感的影响来解释是远远不够的。这并不是说谐波失真本身对听感没有多少影响,根本在于测量谐波失真的方法不足以说明器材的优劣,尤其是在一些高端器材上,传统的谐波失真测量方法已经没有多少意义了,因为谐波失真对于听感的影响,不仅仅和量有关,还和其出现的形式有关。

我们有这样的体会,某些放大器在测量时表现非常好,但是在聆听的时候音质表现还不如差一些的放大器。这种现象曾经困惑了很多工程师、设计员,他们不明白,为什么一个失真率只有万分之几的放大器,实际听感还不如一个失真率达千分之5的放大器。于是,经过更深入的了解,发现原来是传统的测试方法以及计算方式有很大的缺陷,它们不符合人耳的一些听觉特性。

于是专家们又引入了新的概念:瞬态失真(TID,transient distortion)、 瞬态互调失真(TIMD,transient intermodulation distortion)和互调失真(IMD,intermodulation distortion)。

传统的THD测量方法,通常是给放大器一个频率单一的标准正弦波信号,这个信号通常是0.775Vrms@1KHz,讲究一点的还会采用更多的频率,比如100Hz、10KHz等等。但是这种方法的最大弊端是,我们实际聆听的声音远远比这种测试信号要复杂得多。当这些复杂信号同时进入到放大器的时候,放大器实际上并不能按照人们说愿望的那样“产生失真”,而是像化学反应一样产生很多复杂的现象。

由于放大器的“非线性”放大,会引入一种输入信号的和及差的失真。例如,在给放大器输入频率为1kHz和5kHz的混合信号后,便会产生6kHz(1kHz和5kHz之和)及4kHz(1kHz和5kHz之差)的互调失真成份。这叫做互调失真。

瞬态失真是放大器由于采用了负反馈技术后,当负反馈深度过深,信号传输的时间差过大,在出现某些特殊的输入信号时,系统的谐波失真会骤然增大10几倍甚至更高,这种失真不容易被仪器测量出来,但是由于人耳的特殊灵敏性(类似于视觉暂留效应),使得这种失真在人脑中被“放大”,从而极大地影响了听感。

瞬态互调失真则是上面两种失真互相作用的结果。

线性失真和非线性失真

由于篇幅有限,我们这里只提到了通常意义上的失真THD/IMD/TIMD等等这些失真由于改变的原有信号的“形状”,因而被称为“非线性失真”,而在放大器中还有另一类失真,即相对的线性失真,线性失真只改变信号的幅度和出现的时间而不改变信号的形状,即所谓的相位失真和频率失真。有关这一部分我会在后面的文章中叙述。

非线性失真对音质的影响

非线性失真对于主观音质的评价往往是具有决定性的。当我们听到一套系统,感觉声音冷硬、粗糙的时候,就是非线性失真在作怪。但是,我们需要注意的是,不同的非线性失真对于听感的影响不尽相同,实际上,某些失真反倒有助于改善听感。通常来说,电子管的声音比晶体管好听,这是被普遍认识的现象。但是实际上电子管放大器的失真水平往往比晶体管要大得多,这是由于电子管的特性使得谐波失真的成分主要是偶次谐波失真,而偶次谐波正是乐理中的“泛音”,丰富的偶次谐波弥补了由于录音缺陷导致的泛音的不足,甚至可以改变乐器本身音色上的缺陷。当然,这种弥补是需要有一定限制的,过多的泛音会导致声音的模糊,影响声音的清晰度。

一般的谐波失真也不是我们想像的那么可怕,有实验表明,一般人只能对超过3%以上的谐波失真产生恶感,即使是经过特殊训练的专家,最多也只能感受到千分之5以上的谐波失真。

而真正影响听感的失真却是难以测量的瞬态失真和互调失真。这种失真虽然在总失真总所占比例非常微小,但是产生的影响却要大得多。有证据表明,万分之5的瞬态失真,其对音质的影响相当于1%~2%的谐波失真,并且当音乐信号中的快速变化比较多时,这种影响还要更大。瞬态失真会严重影响音乐的清晰度和细节,瞬态失真严重的系统声场定位、乐器成像以及质感表现都非常糟糕。互调失真也是非常令人讨厌,它产生的失真信号毫无规律可言,同样会影响到声音还原的质感和清晰度。

失真产生的原因以及解决方法

对于消费者而言,失真基本无法解决,除了更换器材别无它法。

而对于设计者来说,则应该在电路设计上多下功夫,并且应该选择优质的元器件来保证电路的性能。对于放大器来说,通常有几个办法可以降低对音质影响最大的瞬态失真和互调失真:

采用优质的有源器件,使得放大器的设计条件和实际情况相符;

采用一定的负反馈手段,有效减少THD;

在电路设计上下功夫,努力改善放大器的开环性能,保证负反馈的工作条件;

适当减少负反馈深度,甚至不采用大环路负反馈,杜绝瞬态失真的出现条件;

优质的有源器件能大幅度减少互调失真;

其它…………(很多很多,不说也罢)

(三)频响

(三)频响

任何交流信号都有3个基本特征:幅度、频率、相位。用能量的观点来看,幅度代表能量的高低,频率代表能量变化的周期规律,相位则和频率相对应,代表能量变化的时间顺序(后叙)。

频率响应,简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。同失真一样,这也是一个非常重要的参数指标。一个“完美”的交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大率,并且对于相应的负载具有同等的驱动能力。显然这在目前技术水平下是完全不可能的,那么针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围内的频率的信号。这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz,也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。实际上,根据研究表明,高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放大器甚至会达到0.1~数百KHz。

但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们连这样的要求也不可能达到。于是,就有了“频响”这个指标。(附言:指标本身就代表着“不完美”,如果一切都“完美”了,指标也就没有存在的理由了。)

放大器有两种失真:线性失真和非线性失真。我们通常把后者叫做“失真”,而把前者用其它方式表达出来。非线性失真我们已经知道了是一种什么情况了。而线性失真就是指频率和相位方面的“误差”,即频率失真和相位失真。

频率失真及其产生原因

频率失真是一种“线性失真”,意思是说,发生这种失真时放大器的输出信号波形和输入波形仍然是“相似形”,它不会使放大器对要处理的信号产生“形变”。一个单纯的频率失真可以看成放大器对于不同频率的信号放大倍数不同,例如,1个十倍放大器,对1KHz的信号的放大倍数是10倍,而对于10KHz的交流信号可能放大倍数就变成了9.99倍,于是,我们就可以说这台放大器有频率失真了。在电声学上,我们把这种现象称为“频响曲线的不平直”,这里面的“曲线”我们稍后再讲。

对于一台放大器来说,产生频率失真的原因非常多。和多放大器的内在特性都会影响到这个参数,甚至失真也会插进来一脚(这是测量方法所导致的,后谈)。总的来说,有如下一些情况会导致频率失真:

1、元器件的固有频率特性决定,这是最根本的原因,后面的一些原因实际上都源于这里。

2、采用负反馈技术放大器的开环特性以及负反馈电路本身的频响特性决定。

3、放大器的非线性失真对于测量方法引入的“测量误差”

4、放大器的电路设计导致传输特性的非理想化

5、安装和制造工艺不完善,引入的外界交流干扰信号导致频响的不平直。

谈到这里,我们会发现,这里有很多原因似乎和“测量方法”有关,所以有必要提一下频响是如何测量和定标的。

频率失真(频响)的测试方法与标注

任何可以倍写上说明书的“指标”都是必须借助仪器来测量的,这些指标必须有一个共同的特点,就是“可重复性”,也就是说,只要你用同样的设备,就可以重复得到相同货相近的测量结果。我们把这一类指标称为“客观指标”,频响当然是属于此类。

频响的测量方法很简单,在放大器的输入端接入一个标准信号发生器,这个信号发生器可以产生标准的正弦波信号,并且可以通过调节使得这个发生器的输出信号的频率发生变化,而幅度不变。在放大器的输出端接一个标准的纯阻性负载,并且接一个交流电平表,通过读取电平表的数据,就可以测量该放大器的频响特性了。测量时,为了保证测试结果的可靠和准确,要尽量多地在测试频率范围内选取不同的频率,通常采用的是“对数采样法”,即从一个标准频率(例如1KHz)开始,按照2倍关系向上和向下取点,例如2K、4K、8K……,500、250、125、62.5……,如果嫌这个间隔太大,可以缩小倍数,例如√2,√2/2等等。将这些对应的频率的输出电平(单位是dB)记录下来,并经过统计计算就可以了。

这里,我们可能会忽视一个问题,就是这个放大器的放大倍数是否可以调整?放大器的输出功率应该使多少呢?不是我要卖关子,而是这里的“玄机”非常大。由于放大器的特性的不完美,所以会导致放大器在不同的工作状态下的频响特性发生变化。这叫“测试条件”。我们时常发现,两个质量完全不同的放大器在频响指标上“好像没什么差别”,是那个质量差的放大器在“说谎”吗?非也,是测试条件根本不同。

放大器在不同的输出功率下,其频响是不同的,通常输出功率越大,其频响指标就越差。而一个比较负责任的指标标注,应该指“在该放大器的最大不失真功率下测量的指标”,而一些厂家为了回避大功率输出下放大器特性的劣化,使得该指标“看起来好看”,往往采用的是“标准测试方式”,也就是说,在给定放大器放大倍数(增益)的条件下进行测试,而这个放大倍数通常是1。显然,多数放大器是用来“放大”的,所以这个测试方法实际上并不全面,但是“出于商业目的和测试标准的允许”,这个测试仍然倍认为是“正确”的。这样,我们就应该注意了,看指标的时候不能只关心那些数值,而应该和测试条件联系起来看。没有测试条件的指标是毫无意义的。

标准的频响标注方法是XHz~YHz±ZdB,这里的X是指低端频率,Y指高端频率,也就是测试频率的范围,Z表示的是在这个频率范围内,放大器放大倍数的差异。

很遗憾的是,单单看资额嘎指标还是不能完全了解这个放大器的频响特性,于是厂家又给出了另一种表示形式-频响曲线。

频响曲线的两个重要特征

频响曲线是在上述的测试电路中,使信号发生器的输出信号频率发生连续变化(即通常说的“扫频”)并保持幅度不变,在输出端通过示波器或者其它一些记录仪将放大器对于这种连续变化相应的输出电平记录下来,就可以在一个座标上描绘出一个电平对应频率的曲线。这个座标的纵坐标是电平,横坐标是频率。纵坐标的单位是dB,横座标的单位是Hz(或KHz)。为了记录方便,横坐标的标尺为对数型的,纵坐标则是线性的。

我们可以看看各个厂家提供的不同器材的频响曲线,我们会发现,即使两个看起来频响指标完全相同的器材,其频响曲线也是非常不同的。这里我们暂且不讨论频响曲线不同对音质产生的影响,只看频响曲线有那些重要特征需要注意。这里要着重注意两个特征:平和直。平是指放大器在工作频率范围内频响的最大差距。这里我们需要注意的是“工作频率”,对于音频设备来说,我们应该关心的是20~20KHz这一段的情况,如果要求很高,可以将范围扩大到5~40KHz,这已经是足够了。我们可以看看下图:

图中有5条曲线,其中第一条是“理想”的放大器的频响曲线,这是完全不可能的,只能作为一个理论上的东西,同样,2、3也是不可能的,没有一个放大器的频响特性会是一条完美的直线,不管是平的还是斜的都不可能。因此我们需要放宽一下要求,对于平直的概念需要做一些退让。

我们看到的绝大多数音响器材的频响曲线都应该和4、5图相似。在这些曲线中,我们会看到一些“峰”和“谷”,也就是放大器在这些峰谷所对应的频率下其放大能力的差异变化。看频响曲线的时候,不要被曲线的“平滑”或者“崎岖”所迷惑,首先要看看座标的标尺,改变标尺的单位会使曲线看起来差别很大。比如图4,如果把标尺加大10倍,你大概看到的差不多是一条完美的直线了。

“直”是频响曲线另一个非常重要的特征,它指的就是频响曲线的起伏特征。某种意义上说,我们对于“直”应该比平要多重视一些,这并不是说直真的比平对音质的影响大,而是因为频响曲线的不直往往暗示了这个器材的其它某些特性有问题,例如高频频响起伏过多,往往说明放大器的开环特性不良,并且负反馈深度不适当,通常伴随着比较严重的瞬态失真。

通常我们认为,放大器的频响特性越平越直就越好,这样放大器对于信号的影响就越少。通过观察曲线,我们会认为4比5要好。

这里,我们还要注意的是,我们虽然要重点考察5~40KHz这个频段,但是对于不同的器材,我们考核的频段实际上并不完全一样。例如对于音箱和耳机,这个频段已经足够了,但是对于一些“有源器材”(例如CD唱机、放大器),我们可能需要考核更宽的频段。这是因为对于这些器材来说,虽然这些频段的声音我们不可能听到,但是这些频段的表现可以揭示这个器材的一些内在素质。例如,对于一个放大器,如果其频响指标可以高达300KHz,并且负反馈的深度适当,可以说明这台放大器的开环性能极佳,在听感上必然有所体现。从这个意义上说,这些频段的表现好坏“我们是可以听到的”。

频率失真对声音的影响

频率失真对于音质的影响是非常巨大的,很多时候它会完全左右一个人对音质的评价结果。由于频响对于主观音质评价的影响因素太多,在这里不可能一一举尽,我直挑选一些我认为影响最大的方面来说。

1、对于乐器音色表现的影响。

从广义的范围来说,音色也是音质的一个组成部分。我们知道,不同的乐器具有不同的声音特点,基音、泛音、共振相互作用组成了一件乐器的音色特点,音色就是这些基音、泛音、共振的频率以及比例关系。如果一套系统在频响上不够平直,那么就可能造成音色中各个组成部分的比例发生变化,有些泛音可能被增强了,而另一些泛音可能被削弱甚至难以被听到,这就改变了乐器的音色特征。由于我们很多时候没有机会对比原来那把乐器的声音,所以这个改变并非极端重要,但是,由于乐器“好听”与否几乎就是音色的代名词,因此,过度破坏音色特点的结果可能会造成这个乐器的声音变得难听,因此对于高要求的人来说,最好不要改变音色特征。由于频响会对音色产生影响,因此一些器材设计师会巧妙利用这个现象来弥补录音的不足。对于录音师来说,这种调整也是“家常便饭”,因为他们不可能每张唱片都能“请”到那些“名琴”。

2、对于声场和定位的影响

声场是个非常复杂的电声现象,其中频响特性也会在某种程度上影响到声场表现。由于频响的影响,某些和声场表现有关的声音细节会被弱化或者加强,这就会导致所谓的声场“畸变”。这是一个非常微妙的影响,实在无法在这有限篇幅文字中完全说明,以后再说。对于定位来说,情况也是非常复杂,尤其是那些频率范围很宽的乐器,影响就更大。这一点比较容易理解,距离感和声音的大小有密切的关系,如果频响不平直,乐器在发出某种频率的声音的时候会感觉比发出其它声音要远些或者近些,这样,我们就会感到这个乐器

被纵向拉长了,形体发生了变化。当频响的不平直度严重的时候,我们会感到乐器在前后晃动。

3、对于整体音色的影响

这个话题可以非常古老了,这里就不再多说了。器材的冷、暖,声音的密度、强度都是主要来源于此(当然还有其它因素的影响,进阶篇会有探讨)。

正确认识器材的频响指标

对于厂家的频响指标,我们应该给予足够的重视。但是我们还要记住,这个指标并非“标注”的越高越好,由于我们的耳朵具有一些自身的特性,因此我们需要对频响有个清醒的理解。

1、我们需要的频响指标应该是整个系统的,而不是单一的器材。单个的器材的频响平直并不意味着我们一定会听到“平直”的声音,还要看系统中其它器材的情况。

2、甚至系统中所有器材的频响都是平直的时候,我们也不一定能听到平直的声音。这是因为我们的耳朵本身就不是“平直”的。我们知道,人的耳朵对于高频的敏感程度在一生中会发生变化,20岁左右达到最高峰,35岁左右开始走下坡路,到60岁左右会损失过半,另外还和身体健康状况以及遗传有关。因此,我们在考虑平直的时候,必须要把耳朵一起考虑进去。在这方面,行业内似乎有个心照不宣的约定,这个部分主要由音箱、耳机厂家以及录音师去完成。

3、我们对于频响起伏的辨别程度有限,有实验表明,0.2dB是极少数人的极限(大概几十万分之一都不到),绝大多数人在1~3dB之间。也就是说,小于1dB的频响不平直几乎没有意义,如果为了追求频响的过分平直而舍弃了一些其它要素将是得不偿失的。这个原则对于其它指标也是一样的。

4、前面说过,不能因为某些频段我们听不到就可以去忽略它,因为那些东西可能会暗示器材的一些其它特性的情况。

5、任何指标都要和别的综合起来看,而不能孤立起来看问题

(四)相位失真

相位失真(PHASE ERROR)是一种线性失真,它指的是信号在传输和放大过程中发生了时间延迟。我们来看下面这张图:

图中两个波形分别代表输入端和输出端的信号。我们可以看到,两个信号的形状没有什么变化,差别只是下面的信号比上面的出现的时间“晚了一点”。这相差的时间(Δt)再根据信号的频率就可以换算成相位差。换算方式很简单,相位差PE=360×Δt×f,单位是“度”,其中f是信号的频率。

相位失真产生的原因

我们知道,电容和电感对交流信号(电压或电流)具有延迟作用。当一个交流信号经过电容、电感和电阻的时候,总会有一个充放电的过程,这会导致这个交流信号的幅度变化时间“向后”推迟一段时间。在各种交流放大器中,采用的元器件或者是电感电容,或者是含有电感电容成分,任何一个放大电路或者元器件我们都可以通过等效电路转换成电感、电容、电阻和理想有源器件的组合,即使是性能非常好的元器件也不能幸免,包括传输导线也是如此,这是目前的科技水平说无法逾越的鸿沟。当然,不同品质的元器件其等效电容电感的数值也不一样,并且通过电路优化设计,可以尽量减轻这种影响,但是不管影响有多小,总是有的。所以,相位失真是不可能完全消除的,只要是传输导体和放大器,就会产生相位失真,只是量不同罢了。

相位失真对于音质的影响

从单纯的理解上看,相位失真只是把所有的信号向后推迟了一会儿,我们不过是晚了那么一点时间听到声音罢了。但是,实际情况绝非如此,相位失真实际上对于听感的影响是十分微妙的,在高水平的对比中,它甚至能够称为分出胜负的关键。在介绍相位失真对音质的影响之前,我们不妨先了解一下一些立体声重放的声学原理,以便充分理解相位失真的危害性。

1、声场定位

现在已有的研究表明,人对声音方向和距离的判断主要来自于三个方面:

一是响度优先:当两个来自不同方向同样频率的声音同时到达人耳的时候,我们会感到那是一个声音,并且感到声音的来源是两个声源中间的位置,哪边的响度越大,“成像点”越偏向哪边,当两个声源的响度差超过一定大小时,无论声源的距离有多少,弱小的那个声源几乎不起任何作用,这个差别大约是37dB(记忆的,可能不准确,有兴趣的朋友可以帮助查一下)。

二是时间优先:两个频率相同的声源同时发声,离人耳比较近的那个声源比较占优势,也就是最先到达人耳的声音优先,成像点会比较靠近较近的声源。如果不是同时发声,则先发声的声源占优势。当两个声源的时间差大于一定数值时,我们则会感到是两个声源了,不能被合成单一的成像点。这个时间差和各人的耳朵有很大关系,某些人比另外一些人更敏感。

三是耳廓、耳道效应:这是声音在耳廓和耳道内反射时产生的很复杂微妙的生理声学现象,目前还在研究当中。比较普遍的说法是主要有两个方面的影响,一是反射,使得声音发生微小的时滞,不同方向的声音产生的时滞不同;二是吸收,反射次数较多的声音的高频部分会被吸收较多,因此当转动脑袋的时候,声音的频响特性会发生变化,通常面部正对音源的时候吸收最少,听到的细节最为丰富,响度也较高。耳廓效应可以通过观察动物的表现可以推测出来,动物的耳朵通常会转动,当它们听到奇怪的声音的时候,会将耳朵竖立起来,并且向声音的方向来回转动。人的这个功能早已退化,因此只能靠转动脑袋来代替转动耳朵。

2、立体声放音系统的基本原理

立体声系统实际上时利用上面三种声学效应而设计出来的,当两个声源发出同样的声音的时候,我们不会感到时两个声源在发声,而是主动把这两个声源进行了合并,按照上面的原理“想像出”一个其实并不存在的居于两个声源之间的“虚幻”的声源。当这样的两个声源发出复杂的并带有部分差别的音乐时,就会使得我们产生一个声场的幻觉,每个乐器或者发声物是根据它们在两个声源的响度、时间的微小差别在我们的前方的相应位置产生“幻像”,这就是所谓的“成像”。在成像过程中,两个声源的响度、时间、频响的差别都会对成像点产生影响。这里的“声源”就是我们音响系统里的喇叭和耳机。

通过上面的一些知识,我们发现,“时间差”对于声像的定位起着非常重要的作用,在声场定位的三个原理中,有2个都与它有关。因此,相位失真是影响声场定位最为重要的因素之一。(并非唯一,响度也是非常重要的因素,那是后话,这里暂且不表)

如前所述,单纯的相位失真并不足以影响听感,但是实际上我们所碰到的相位失真根本就不是单纯的,这种不单纯的相位失真则会产生各种影响,主要有以下几个方面:

1、立体声系统中左右声道相位失真不一致

这是比较普遍的情况,尤其是在不怎么“HIFI”的系统中几乎是通病,它的意思是在同一个频率下,两个声道产生的延迟会有差异。当这个差异比较大的时候,就破坏了两个声道中音乐信号的相位关系,使得声像发生偏移,当然,这还不足以造成太大的问题,如果这种偏移是固定不变的,那么我们仍然不会察觉出来,因为我们并不知道录音现场的情况,无法进行对比。但是会有另外一个情况发生,就是我们对于时间差的变化所对应的声像位置并不是“线性”的,也就是说,这个时间差只有在一定范围内才会使得声像的位置发生较大的改变,如果太大就会分裂成两个成像点,如果太小,则基本无法察觉,并且,这还和声音的频率有很大的关系。于是,某些声音由于频率比较“适当”而会“呆在它应该在的位置上”而另外一些声音则会偏离应有的位置。这样就会造成声像的重叠,也就是通常所说的“声场混乱”。我们很多时候对于一个系统的评价是“声场拥挤、混乱”就和这个原因有关。

2、不同的响度下相位失真的不一致

对于一些比较低档的音响器材来说,这是非常普遍的现象。我们经常会说某套系统动态一上来声场就乱套了,就和这个有很大关系。某些器材在小功率输出下相位失真还比较效=小,一旦输出功率增大,相位失真急剧增加,通常这种增加的幅度在两个声道中是不一致的,因此同时加剧了声道间相位失真的差距,造成声像定位的混乱。

此外,由于乐器的响度是变化的,因此在一个相位失真严重的系统中,乐器的响度变化会造成其结像点的漂移,使得我们感到这个乐器在前后左右晃动,相位失真越大,晃动范围越大,甚至在某些时候会感到乐器被分割开了。这样就会严重影响听感。当然,这是一种非常极端的现象,即使是非HIF系统中也是少有的,或者即使有,也早已被更严重的问题说掩盖了。

3、强音和弱音的时间关系改变

这其实是相位失真的最大害处。我们知道,我们的耳朵具有一定的“掩蔽效应”。这个效应的意思是,当一个强音和一个弱音同时出现时,如果相差的响度大到一定程度,我们将不能感受到那个弱音的存在。由于相位失真的频率差异特性,有可能会把两个原本分开的声音叠加到一起,当这两个信号的响度差异较大的时候,微小的声音就会“消失”了。相位失真和系统的瞬态响应以及信噪比共同控制着这个系统对于弱音的表现能力,其中任何一个指标的缺陷都会造成系统细节表现变差,也就是我们说所说的丧失“空气感”“质感”。

4、不同频率的信号相位失真的不一致

这个现象和现象3产生的结果有些相似,但又有一定差别。由于音乐中的高频往往含量比较少,弱音很多,所以不同频率的相位失真的不一致也会造成高频信息的损失。另外一个最重要的是,乐器的声音是由一些基音、谐波,以及它们的响度、时间关系等组成的,破坏了时间关系,就会导致乐器声音的质感发生变坏,某些谐波会被增强或者掩蔽。另外,由于这种和频率有关的影响会加剧互调失真的程度,也会对听感产生恶劣的影响。

音箱系统和耳机系统对于相位失真的不同要求

音箱系统和耳机系统相比,有着比较明显的原理差别。耳机通常利用的是前述第一、二个效应,对第三个效应几乎毫无利用。并且对于第二个效应也由于发声点距耳朵较近,影响也会相应有所弱化。因此说“耳机系统对于相位失真的敏感程度要低于音箱系统”。对于音箱系统来说,由于系统自身的相位失真和声音从音箱到达耳朵的时间(3米左右,可以计算出声音的传播时间,音速四334米/秒)具有一定的可比性,因此,相位失真相当于将音箱向前或者向后“拉”了一定距离,听过音箱的人都知道音箱的摆位对于声场结像的重要作用,可以想像一只音箱前后左右移动几十厘米甚至几米对于声音的影响的程度。

但是,上面的情况并不等于耳机系统就不需要考核相位失真这个指标了,在前面的分析中我们知道,声音的细节表现和相位失真有着密切的关系,并且由于对定位作用影响的弱化,这个问题会凸现出来,因此仍然要重视这个指标,只是考核的角度发生了变化,从相位失真的大小转变成对“一致性”方面的要求更为苛刻。

解决相位失真的一些办法

对于耳机系统来说,主要是两个方面。一是对放大器性能方面的要求,也就是在设计时要充分考虑放大器相位失真的一致性(设计师各有高招,不提了)。二是重视放大器和耳机之间的匹配,使得由于耳机和放大器驱动不匹配所产生的相位失真达到最小。

对于音箱来说,还要考虑摆位的问题,利用摆位来抵消一部分相位失真。

另外,由于信号在传输过程中由于其自身具有电容和电感,也会产生相位失真,同样也需要得到一定的重视,尤其是在非常高级的系统中,传输问题不可忽视。

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: